Important angle properties
If Line A and Line B are parellel then
1. Alternate angles always equal
ã„¥3 = ã„¥6 ,ã„¥4 = ã„¥5
2. Vertical angles always equal
ã„¥1= ã„¥4 ,ã„¥2 = ã„¥3,
ã„¥5 = ã„¥8,
ã„¥6 = ã„¥7
3. Corresponding angles always equal
ã„¥1 = ã„¥5 , ã„¥4 = ã„¥8 ,
ã„¥2 = ã„¥6,
ã„¥1 = ã„¥5
Other important fact = ã„¥4 + ã„¥6 = 180°
Center of Triangles
1. Incenter
Incenter is a point in which the three bisectors of angle A, B, and c of a triangle intersect.
Properties of Incenter
• ã„¥BIC = 90° + `\frac{A}2`
ã„¥CIA = 90° + `\frac{A}2`
ã„¥BIA = 90° + `\frac{A}2`
• FI = EI= DI
• let Radius of Incircle or Inradius ( r )
Semiperimeter (s)
r = `\frac{area of triangle}s`
r = `\frac{median}3` = `\frac{height}3` = `\frac{angle bisector}3`
• If AD = h1
BE = h2
CF = h3
`\frac{1}r = \frac{1}{h1} + \frac{1}{h2} + \frac{1}{h3}`
Inradius of Equilateral triangle
r = `\frac{a}{2\sqrt3}`
( a = side of Equilateral triangle)
-
Inradius of right angle triangle
r = `frac{P + B - H}2`
2. Circumcenter
Properties of Circumcenter
-
OA = OB = OC = R = Circumradius
- `\frac{a}SinA=\frac{b}SinB =\frac{c}SinC = 2R`
- `R = \frac{abc}{4\times area\;of\;triangle}`
3. Orthocenter
0 Comments